If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-20x+2=0
a = 15; b = -20; c = +2;
Δ = b2-4ac
Δ = -202-4·15·2
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{70}}{2*15}=\frac{20-2\sqrt{70}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{70}}{2*15}=\frac{20+2\sqrt{70}}{30} $
| X+X×2x=210 | | 150x^2-200x+20=0 | | 11x=-35 | | 1/70+x=5/14 | | 6(y-5)=22 | | -150x^2+200x-20=0 | | 180=8x-41 | | 20=2-2n-7n | | x+x(x)+x=12 | | 1/3y+2=-8 | | 4/5(x−5)=4 | | 3y+4y+2y=180 | | 5x+50=20x | | 8a=30 | | 84x=252 | | 88=8(-n+4)+n | | 400n-200=800n-500 | | 2.10d+5=49.10 | | 55+5n=10+10n | | -2(x+5)=24 | | 16(c+8.2)=-84.7 | | 2+3n=2+5n | | 2a+a+90=180 | | –66=r+5r | | 9+40n=20n+14 | | 4u-12=8(u-4) | | 2(q+8)=10 | | q+2.4=8.3 | | 4(-w+2)=2(3w+3)+1 | | 16(c+8.2)=84.7 | | 6(w-2)=2w+28 | | 24/3+2x-√64=27+13 |